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One of the most fascinating problems in mathematics is the four-color conjec-
ture, and in spite of the fact that we have nothing new to add, a short discussion
of the matter is important for our purposes. The fascination of the problem is
almost certainly due to the fact that the relevant question may be stated so as
to be intelligible to the general public. Are four colors always enough to obtain
a coloring of the countries of any map on a sphere? It is only necessary to clarify
the italicized words above for the general reader to understand and, if inquisitive,
to become interested in the problem.
A country must be connected; hence Pakistan, which consists of two disjoined

parts, does not qualify. The reader begins to realize that we are considering an
abstraction which has little resemblance to political reality.

In reference to the term map on a sphere, there are no oceans; every point on
the sphere is either inside exactly one country or is on the frontiers of two or more
countries. Two countries are adjacent if they have a common line of frontier
points. Thus France and Spain are adjacent, but the states of Colorado and
Arizona are not, in spite of the fact that they have one frontier point in common.
The negating factor is that there is no common line of frontier points.
A coloring of a map on a sphere is an assignment of one color to each country

so that no pair of adjacent countries is assigned the same color. Thus two
countries having the property observed above (Colorado and Arizona) may be
assigned the same color, but countries like France and Spain must be assigned
different colors. The minimum number of colors which suffices to color a given
map is called the chromatic number of the map. The maximum, m, of the chro-
matic numbers for all maps on the sphere is called the chromatic number of the
sphere. Thus we can be assured that any map on the sphere can be colored by
using no more than m colors. The question is: "What is m?" It is easy to see
that there is a map on a sphere that consists of four countries each adjacent to the
other three. Hence this map has four as its chromatic number. Consequently,
m> 4. This leads to the classical question: "Does m = 4?" No one knows the
answer. It can be shown, however, that m < 5.
M\any attempts have been made to settle the matter. One of the most notable

was made by the English barrister Kempe, who claimed the result in 1880. In
1890 Heawood1 discovered an error in Kempe's proof and went on to consider
the problem for surfaces more complicated than a sphere. The simplest in the
hierarchy of such surfaces is a torus, or the surface of a tire. The terms "coun-
try," "map," "adjacent," etc., have meaning on such a surface, and Heawood
showed that the chromatic number of a torus is seven.
The standard topological model of a surface (or orientable two-dimensional

manifold) S, of genus p is a sphere with p handles attached to it. (One may also
think of the surfaces of a Swiss cheese with p holes through it.) Thus a torus is
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(topologically) a sphere with one attached handle. Heawood's success was due
to two facts:

First, he was able to prove the theorem that x(S,), the chromatic number of S,
satisfies the inequality

x(SP) < [7 + -/1 + 48p], (1)

if p is positive. (The notation [a ] stands for the largest integer not greater than
a.)

Second, he was able to exhibit an example of a map with seven countries on a
torus such that each country was adjacent to the other six.
The theorem showed that if p = 1, then x(Sl) < 7, while the example showed

that X(SI) 2 7, and thus the matter was settled: X(SI) = 7.
Heawood, who wrote and proved in the occasionally casual style of the last

century, was under the impression that he had shown equality to hold in (1) for
all p > 0. A year after his paper appeared, Heffter2 drew attention to the incom-
plete nature of Heawood's arguments and was able to prove that equality holds
in (1) for 1 < p < 6, and certain additional values of p.
Here the matter stood for about three quarters of a century.
As nearly as can be determined, within a few years of 1940, a portion of mathe-

matical folklore was born. This was that equality had been proved in (1) for
all p > 0. Such a statement is found in Courant and Robbins,3 but communica-
tion with the authors has provided no information on the following question:
Did their error create the folklore, or vice versa? On the other hand, Feller has
told one of us that the folklore, accepted as fact, was known in Gottingen in the
early 1930's.

In any event the statement that

X(SP) [+ +48p] if P > 0, (2)

came to be known as the Heawood map-coloring conjecture.
It is the object of this note to announce that after a lapse of 78 years the Heawood

conjecture is settled in the affirmative.
A comment with regard to method is worthwhile. First, however, we wish to

introduce some notation. The term on the right in (1) is used so often that it is
convenient to employ the abbreviation

H 7)[+ -V1 +48p],3

The attack is essentially that of Heawood and Heffter, with significant com-
binatorial refinements. We consider the following problem:
For each n > 3 determine the smallest integer 'y(n) for which it is possible to

have a map consisting of n countries on the surface Sy(n) such that any two coun-
tries are adjacent. Note that this implies

(4)
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If we define

(n) {(n - - (5)

(where the notation { a} means the smallest integer not less than a), then it has
been shown elsewhere that

,y(n) I(n) for n > 3. (6)
In fact, (6) is called the complete graph theorem and

ay(n) = I(n) for n > 3, (7)
the complete graph conjecture.
We shall prove that if (7) is true, then the Heawood map-coloring conjecture is

settled in the affirmative.
Suppose (7) is true. Then for n > 7 and I(n) < p < I(n + 1), a direct compu-

tation shows that H(p) = n. On the other hand, it is easy to see that x(Sp)
> X(SI(X)), and using (7) and (4), it follows that x(S,) > X(SI(,,)) = x(S(n))
> n. And now (1) implies that x(Sp) = H(p). Since I(7) = 1, this implies (2).
The right-hand side of (5) suggests that there may be 12 cases to the problem,

depending upon the membership of n in the various residue classes modulo 12.
If n = 12s + k with 0 < k < 11, we say we are dealing with Case k.
We proceed to provide a short history of the solution, and end with an example

from Case 8, one of the last to be solved, and one which illustrates the new tech-
niques required for the last three cases to be settled.
A History of the Solution.-In 1891 Heffter2 attacked Case 7; that is, n = 12s

+ 7. Here he was able to show that -y(n) = I(n), if q = 4s + 3 is prime and
the order of 2 in the multiplicative group of integers mod q is either q - 1 or
(q - 1)/2. In addition, as mentioned earlier in dual form, he proved the com-
plete graph conjecture for n < 12.

In spite of the fact that there is evidence to show that the problem was well
known, the first published attack in this century was due to Ringel4 in 1952. He
proved the equality of x(S,) and the "maximum number of neighboring domains"
on S, namely, the largest integer v such that S, has a map with the property that
v countries in the map are adjacent to each other. The concept was introduced
by Heffter.2 Moreover, Ringel formally introduced the idea of "orientable
scheme," and proved y(13) = I(13).

In 1954 Ringel5 solved Case 5. This solution is also found in his book.6 It
was the first case to be settled completely. In 1961 he succeeded in solving
Cases 7, 10, and 3, in that order.7

In the spring of 1962 Youngs conducted a seminar on the subject, and his
colleague W. Gustin8 became interested in what are called the regular cases,
namely, those in which (n - 3) (n - 4) 0 mod 12. He introduced the very
powerful weapon of current graphs and announced solutions to Cases 3, 4, and
7, unaware of Ringel's successful solution to the first and last of these cases. Un-
fortunately, Gustin did not follow his research announcement with details and
gave only three examples, one from each of the Cases 3, 4, and 7. It is a pity that
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his example in Case 4 is in error. For an exposition of the theory, and a de-
velopment of the additional basic idea of vortex graphs, the reader may consult
Youngs.9

In 1963 Terry, Welch, and Youngs found a simpler solution to Case 4, a result
that was also obtained independently by Gustin. The proof has not been pub-
lished. In the same year Terry, Welch, and Youngs10 solved the remaining
regular case, namely Case 0.

In 1963-1964 the theory of vortex graphs was developed by Youngs9 and led to
a successful solution to Case 1 in collaboration with Gustin.
The next case to fall was Case 9 in 1965, the bulk of the work being done by

Gustin. In 1966 Youngs solved Case 6.
This left only Cases 2, 8, and 11.
In early 1967 Ringel found an "index 2" solution (see Youngs9) to n = 12s +

2, for s odd.
Ringel and Youngs discussed the problem in Berlin in the summer of 1967 and

felt that although the rest of Case 2 appeared possible using index 2, they had no
idea how to tackle Cases 8 and 11. In a newsletter in 1964 Youngs had already
implied some despair with regard to these cases.
We joined forces at the University of California (Santa Cruz) in the fall of

1967, and an attack was launched on n = 12s + 2 with s even. However, it was
impregnable to an index 2 assault.

In all the cases that are not regular, that is, n 0 0, 3, 4, 7 (mod 12), there are
two parts to the attack. One may be called the "regular" part and the other the
"additional-adjacency" problem. This will be made clear in the example below.
The additional-adjacency problem is trivial if n 2 or 5 (mod 12); and

though somewhat more difficult if n- 10 (mod 12), the problem had been
solved by Ringel.7 The same technique works for n - 1, 6, and 9 (mod 12).
We decided to make the additional-adjacency problem for Case 2 more dif-

ficult and to try finding an index 1 solution. It worked. We then began to have
hope for Cases 8 and 11. With similar techniques Case 8 fell next and within a
few weeks Case 11. It is a pleasure to mention the fact that Richard Guy was
in at the finish in December.
Changing the additional-adjacency part of the plan of attack makes the

regular part more difficult and, in some cases, impossible for small values of n.
In every case that is not regular such a difficulty may arise, and ad hoc methods
are necessary to settle the matter. At the end of 1967 the only cases in which (7)
was in doubt were n = 18, 20, 23, 30, 35, 47, and 59. Within the past few weeks
we have heard from Jean MNlayer, Professor of French Literature at the Univer-
sity of iLontpellier, and are delighted to learn that he proved (7) for all n < 23
during 1967. The cases n = 35, 47, and 59 were solved at the end of February
1968. Finally the case n = 30 was solved within the past few days.
An Example.-We propose to illustrate the solution in Case 8 with an ex-

ample, n = 32.
The regular part of the problem is to construct a certain map with 33 countries

on a surface S. The countries are identified by the numbers 0, 1, 2, ... 29, and
the letters x, yo, and yi. Moreover,

VOL. 60, 1968 441



MATHEMATICS: RINGEL AND YOUNCS

(1) Each pair of countries identified by numbers is adjacent.
(2) The country x is adjacent only to every numbered country.
(3) The country yo is adjacent only to the even-numbered countries, y,

only to the odd-numbered countries.
(4) At most three countries have a common frontier point.
The Euler formula implies that the genus of S is 67.
The additional-adjacency problem, the reader will see, is to add one handle to

the surface S and obtain a map in which 32 countries are mutually adjacent.
This will show that -y(32) < 68. However, 7y(32) > I(32) = 68, by (6). Hence
(7) holds for n = 32.
We now turn to the regular part and interpret the numbers to be elements of

Z30, the additive group of integers mod 30. The reader is referred to Youngs9
for definitions of unfamiliar terms.
We use the current graph with rotations shown in Figure 1.

1 10 2 4

9 124 s 6 31 1 55

14 5 13 11

FIG. 1.

Note that:
(1) There is a singular arc with current 15 and 15 is of order 2 in Z30.
(2) Kirchhoff's current law holds in Z3o at each vertex of degree 3.
(3) The current 1 running into the vortex x generates Z30.
(4) The current 14 running into the vortex y generates the subgroup of even

elements in Z30.
(5) As shown in Figure 2, there is a single circuit induced by the rotations,

and the currents on it contain all the nonzero elements i 1, . .., i 14, 15 of Z30
without repetition.

FIG. 2.

This generates an orientable scheme that is the desired map, and hence solves
the regular part of the problem (see Youngs9).
We stress the fact that there are many solutions to the regular part. In fact,

any distribution of currents and rotations that has properties 1-5 above is a solu-
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20

3Ii Y" i 20

FIG. 3.

tion. However, a solution to the regular part must be chosen in such a way as
to make a solution to the additional-adjacency problem possible. This particular
solution has the desired property.
To solve the additional-adjacency problem we must look at part of the orient-

able scheme generated by the vortex graph. The complete permutation in row
0 is obtained by recording the currents associated with the directed arcs on the
circuit (writing 29 for -1, etc.). The pertinent part is contained in the portion

0. ... 14yo1621 1x29 ... 925 12226 ...

Row i is obtained by adding i to each element of Zao in the permutation above,
and leaving the position of x and yo unchanged; however, yo is replaced by y,
if k is odd. The complete permutations in rows x, yo, and yi are

x. 0 1 2 ... 27 28 29

yo. 0 14 28 ... 18 2 16
yi. 1 15 29 ... 19 3 17

We need the following portions of rows 4, 5, and 18:

4. ... l8yo20...
5. ... Y1 ... x 4 ... 14 0 ...

18. ... 0 20 14 ...

This provides a partial picture (Fig. 3) of the map on S "around" the countries
4, 5, 18, and 0.
We modify the map on S as illustrated in, Figure 4. Notice that we have

gained the adjacency (yo,5) and lost only (4,yo). Now consider the map of Figure 5
on a torus, in conjunction with Figure 4.

Excise the country 5 from Figure 4 and z from Figure 5. Identify the bound-
aries of the resulting surfaces in the obvious way. Erase the frontier between yo
and yi, and call the resulting country y. This is the desired map.
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FIG. 4.

b

5 D ~~~~~~~~~5

b

FIG. 5.

The general solution is similar in Cases 2, 8, and 11. The challenge is always
to obtain a felicitous "dovetailing" of the regular and additional-adjacency
parts of the problem.

* Both authors received partial support from National Science Foundation grant GP7018.
The first author is a visiting professor from the Free University of Berlin.
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